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There is an analysis of the flow of an anomalous-viscosity liquid with a power-law 
rheological equation in the converging screw channel of a screw pump (an extruder, 
a mixer, etc.). Circulation of the liquid in the channel is taken into account. 

The model usually adopted for the flow of a liquid in the converging screw channel of 
a screw machine is simple shear flow between two infinite plates inclined at some angle with 
respect to each other. A pressure gradient acts in the region between the plates. This pro- 
blem was treated in [I, 2] for a Newtonian liquid, and that for a non-Newtonian liquid, 
obeying a power-law rheological equation, was treated in [3-5]. Since this model is valid 
only for screws with a small pitch angle and for liquids whose properties are not greatly 
different from those of a Newtonian liquid, we feel it is worthwhile to treat the analogous 
problem for the case of a complex shear flow. 

We consider the flow of a liquid with a power-law rheological equation in the slowly 
converging screw channel of a screw pump. The screw is shown in Fig. la. We assume that 
there are no gaps between the thread of the screw and the housing, and we assume that the 
initial depth H of the channel is less than its width S and much less than the screw radius. 
Under these assumptions we can treat the liquid flow within the channel as flow between in- 
finite plates (Fig. Ib). The lower plate is fixed, while the upper plate moves at a velocity 
V 0. The x axis is along the channel, the y axis is along its width, and the z axis is along 
its depth. We neglect the inclination of the plates in the y direction. Acting along the x 
and y axes are pressure gradients a p / a x = A i  and ~ p / O y = A z  . We assume that the liquid flow 
rate Q is given. 

A qualitative examinatian of the flow pattern in a slowly converging channel shows that, 
by virtue of the continuity condition, the velocity curves and thus the pressure gradients 
AI and A2 vary along the length of the channel. At certain values of the parameters in the 
gap between the plates there can exist a cross section h x = h,, in which we have AI = 0. 
In this case, in the region H>~hx>~h, the pressure gradient AI~0 reduces the flow rate 
of the product, while in the region h~h~<~h, the gradient Ai~0 increases the flow rate. If 
AI changes sign in the gap between the plates, the pressure initially increases from the 
entrance toward the exit and then decreases; if, on the other hand, A: changes sign beyond 
the channel (h,<~h), , the pressure increases continuously from the entrance of the channel 
to the exit. 

We replace the inclined plane by a series of steps consisting of plane regions of length 
dx parallel to the x axis, each shifted by an amount dz with respect to the adjacent region. 
Within each such step the decrease in the channel depth leads to the appearance of a pres- 
sure drop d R in this region. We assume that within each step the liquid flows as it would 
between parallel plates. We neglect the velocity component w z. 
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Fig. i. Screw with a slowly converging channel (a); planar 
model of this system (b). 

As the rheological equation we adopt a power law, which can be written in the following 
manner for this type of flow [6]: 

where 

�9 = 

The e q u a t i o n s  o f  m o t i o n  a l o n g  t h e  x and y axes  a r e  

Oz Oz 

and their solution is 

(2) 

~:~ = ~ AI (z - -  clh,:), "~  = A~ (z - -  c~h~). (3) 

Using the condition that the liquid adheres to the plates and the condition that the 
flow rate in the direction transverse to the channel axis vanishes, we can write the joint 
solution of Eqs. (i) and (3) in the following form* [7]: 

vx~-- wx/Vo ~ ~ - ~  ~(~, c 1, c.2, a)(~--:-Cl)d~,*) (4) 

0 

rJy 

a f --- w~/Vo --- - ~  

0 

f (~, cl, c~, a)(g - -  c~) d~, (5) 

*In Eqs. (4)-(6) and below the plus sign corresponds to flow with A~>0. and the minus sign 
corresponds to flow with AI~<0 . 
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Fig. 2. Dimensionless flow 
rate q'xasa function of the 
pitch angle ~ and the visco- 
sity anomaly n: i) @ = 0~ 
2) 6~ 3) 12; 4) 18; 5) 24; 
6) 30; 7) 36; 8) 42; 9) 48 ~ 

In Eqs. (:4)-(._6) we have 

a = A # i A l f ,  a = - -  ~ ,  
h~ 

Z 

q~ Voh~S h~ ' " 

Accordingly, after specifying a definite channel depth hx, we have a system of four 
transcendental equations with which we are to determine integration constants cx and c2, the 
ratio of pressure gradients a, and the unknown ~. Knowing the latter, we can determine the 
longitudinal pressure gradient At in a straightforward manner from 

• A ~ -  h~+~ 
(7)  

The element of power required to overcome the viscous-friction forces under conditions 
of complex shear over an element of the channel of length dx and width S is given by 

d N  -~ (z~f~=hYo cos q9 ~,- *J~=h V o sin qo) S d x .  
(8) 

Substituting into Eq. (8) the tangential stresses from (3) at z = hx, taking their 
sign into account, and using (17), we find 

d N  = B VoS  [ a ( 1 -- co.) sin q~ ::i: (1 -- q)~cos q~] dx .  (9) 

We see from system (6) that for the closed-exit regime (qx = 0) we have cx = c2 = ~m, 
in any cross section along the length of the channel, and we have ~ = tg ~, We find an 
equation for Sm after integrating (6d): 

l+2n 1+2____n l+___n 

n 

The Joint solution of Eqs. (6a) and (6c) under the condition qx = 0 is 

Ai1-  ) cc b cos v lqD b = ~ n  , A (1 - -  ~ . ~ ) b _ ~  ( l l )  
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Fig. 3. Profiles of the longitudinal pressure gradient 
(a) and the pressure drop Co) along the length of the 
screw channel for various values of the flow rate 
Q (m3/sec): i) Q = 0; 2) 5"10-5; 3) 7.5.10-5; 4) i0. 
10-5; 5) 12.5.10-5; 6) Q = Qmax = 13.75 "10-5: 7) Q = 
0 (H = 0.005 m); 8) Q = 0 (H = 0.002 m) A,, N/m3; I, 
m; Ap, N/m 3. 

SuBstituting a from (ii) into (7) and (19) successively and integrating the resulting 
equation over the length of the channel, we find equationsfor the maximum pressure drop and 
the power drawn by the screw pump: 

n .  tg  5 h ~ H" 

BV'o+~S ( b )~(m_,,_m_9(l_~,.). (13) 

Integrating the longitudinal pressure gradient AI along the length of the channel, we 
find an equation for the pressure drop between the entrance and the exit of the screw pump: 

l 

0 

(14) 

Analogously, we find an equation for the total power drawn by the screw: 

l 

N---- f dN dx. 
. dx 
o 

(15) 

The depth of the channel at the cross section in which we have A, = 0 is 

Q 
h , - -  VoSq, ~ , 

where qx, the dimensionless liquid flow rate, is determined from system (6) by setting 
AI = 0.: 

(16) 
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Fig. 4. Pressure drop and power 
drawn as functions of the flow 
rate. i) H = 0.005 m, h = 0.002 m; 
2) H = 0.002 m; 3) H = 0.005 m. 
Here AP is in newtons per square 
meter, Q is in cubic meters per 
second, and N is in newton-meters 
per second. 

If h,<<h , then we have AI > 0 over the entire 
region H~h~h. If, on the other hand, we have h,>h, 

then over the region H~hx~h, we have A~0 , and over 
the region h~h~h, we have Al~0 �9 

Figure 2 shows the dimensionless flow rate q'x 
as a function of the pitch angle @ and the viscosity 
anomaly n calculated on a computer. We see that as 
the pitch angle @ increases, the value ofq'xdecreases, 

while it increases with increasing viscosity anomaly 
--more rapidly, the larger this anomaly. In the case 
@ = 0 (the case of simple shear flow) we have q' = x 
0.5, independent of the viscosity anomaly. In the case 
of slhnple shear Couette flow between parallel plates 
we have Q = 0.SV0hS, and the velocity profile is a 
triangle. 

To carry out concrete calculations we adopted 
the following parameter values: H = 0.005 m, h = 

0.002 m, ~ = 12 ~ S = 0.097 m, L = 0.3m (i = L/sin 
= 1.42 m), B = 200 N.secn/m 2, n = 0.5, and V 0 = i 

m/see. 

The system of transcendental equations in (6) was 
solved numerically on a computer; the results are 
shown in Figs. 3 and 4. 

Figure 3a shows the profile of the longitudinal 
pressure gradient AI along the length of the channel 
for various flow rates Q. We see that in the case 

Q = 0 (curve i) the pressure gradient increases continuously from the entrance to the channel 
to its exit, while in the case Q = Qmax (curve 6) it continuously decreases. The point at 
which the curves intersect the abscissa gives the cross section in which we have Az = O. 
Curves 2-5 are plotted for intermediate flow rates. We see from this figure that as the 
flow rate increases, the depth of the channel with the vanishing longitudinal pressure gr a - 
dient shifts from the exit from the channel toward its entrance, reaching its maximum value 
at Q = Qmax. In t~e case of a completely closed exit (Q = 0) we find from Eq. (16) that h, 
= 0, i.e., that h, is at theintersection of the moving and fixed planes. 

Shown for comparison in this figure, by the dashed curves, are the maximum longitudinal 
pressure gradients for screws with a constant channel depth (curve 7 corresponds to a screw 
with H = 0.005 m, while curve 8 corresponds to H = 0.002 m). While the pressure gradient 
is constant for screws with a constant channel depth, that for screws with a slowly con- 
verging channel can vary in different manners, depending on the flow rate. 

Figure 3b shows the pressure profile along the length of the screw channel. While for 
screws with a constant channel depth the pressure increases linearly from the entrance to 
the exit (curves 7 and 8), the pressure profiles are nonlinear in all cases for screws with 
a constant channel depth, that for screws with a slowly converging channel. Curve 6 cor- 
responds to a completely open exit (Q = Qmax); in this case the pressure of the product 
initially increases to some maximum and then decreases. The pressure drop between the en- 
trance to the channel and the exit from it vanishes in this case, and the maximum on the 
curve shows the cross section h x = h, in which we have AI = 0. 

Figure 4 shows the pressure drop Ap and the power drawn N as a function of the flow 
rate of the screw pump Q. Curves I correspond to a screw with a converging channel, while 
curves 2 and 3 correspond to screws with a constant channel depth (curve 2 is drawn for H 
= 0.002 m, while curves 3 are drawn for H = 0.005 m). We see from this figure that the maxi- 
mum flowrate developed by a screw with a converging channel is less than that for a screw 
with H = 0.005 m but larger than that for a screw with H = 0.002 m. The same conclusion can 
be drawn regarding the power drawn. As for the maximum pressure drop, it is smaller for the 
screw with a variable channel depth than for a screw with H = 0.002 m but larger than that 
for a screw with H = 0.005 m. 
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NOTATION 

x, y, z cartesian coordinates; H, hx, h, initial, instantaneous, and final depths of 
the screw channel; L, screw length; l, S, length and width of screw channel, respectively; 
~, pitch angle; V 0, velocity of upper plate; v x, Vy, dimensionless liquid velocities; w x, 
Wy, actual velocities of liquid particles; At, A=, pressure gradients; Q, product flow rate; 
qx, dimensionless flow rate; p, pressure; T, stress tensor deviator; A, strain rate tensor; 
T ~,-T .... components of stress tensor; 12, quadratic invariant of strain rate tensor; B, x~ ~ ,  
n, rheological constants; N, power; ~, angle between the lower plate and the upper plate. 
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